

λ -Calculus

Thomas Sewell UNSW Term 3 2024

λ -Calculus

The term language we defined for Higher Order Abstract Syntax is almost a full featured programming language.

Just enrich the syntax slightly:

$$\begin{array}{ccccc} t & ::= & \texttt{Symbol} \\ & | & \chi & (\textit{variables}) \\ & | & t_1 \ t_2 & (\textit{application}) \\ & | & \lambda x. \ t & (\lambda \text{-abstraction}) \end{array}$$

There is just one rule to evaluate terms, called β -reduction:

$$(\lambda x. t) u \mapsto_{\beta} t[x := u]$$

Just as in Haskell, $(\lambda x. t)$ denotes a function that, given an argument for x, returns t.

Syntax Concerns

Function application is left associative:

$$f \ a \ b \ c = ((f \ a) \ b) \ c$$

 λ -abstraction extends as far as possible:

$$\lambda a. f a b = \lambda a. (f a b)$$

All functions are unary, like Haskell. Multiple argument functions are modelled with nested λ -abstractions:

$$\lambda x.\lambda y. x + y$$

β -reduction

 β -reduction is a *congruence*:

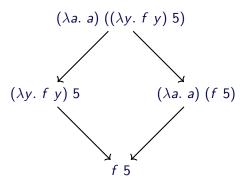
This means we can pick any reducible subexpression (called a redex) and perform β -reduction.

Example:

$$(\lambda x. \ \lambda y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \mapsto_{\beta} \ (\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x)$$
$$\mapsto_{\beta} \ f \ ((\lambda x. \ x) \ 5)$$
$$\mapsto_{\beta} \ f \ 5$$

Confluence

Suppose we arrive via one reduction path to an expression that cannot be reduced further (called a *normal form*). Then any other reduction path will result in the <u>same normal form</u>.



Equivalence

Confluence means we can define another notion of *equivalence*, which equates more than α -equivalence. Two terms are $\alpha\beta$ -equivalent, written $s\equiv_{\alpha\beta} t$ if they β -reduce to α -equivalent normal forms.

 η

There is also another equation that cannot be proven from β -equivalence alone, called η -reduction:

$$(\lambda x. f x) \mapsto_{\eta} f$$

Adding this reduction to the system preserves confluence and uniqueness of normal forms, so we have a notion of $\alpha\beta\eta$ -equivalence also.

Normal Forms

Does every term in λ -calculus have a normal form?

$$(\lambda x. x x)(\lambda x. x x)$$

Try to β -reduce this! (the answer is that it doesn't have a normal form)

Why learn this stuff?

- λ -calculus is a *Turing-complete* programming language.
- λ -calculus is the foundation for every functional programming language and some non-functional ones.
- λ-calculus is the foundation of Higher Order Logic and Type Theory, the two main foundations used for mathematics in interactive proof assistants.
- λ -calculus is the smallest example of a usable programming language, so it's good for research and teaching about programming languages.

Making λ -Calculus Usable

In order to demonstrate that λ calculus is actually a usable (in theory) programming language, we will demonstrate how to encode booleans and natural numbers as λ -terms, along with their operations.

General Idea

We transform a data type into the type of its *eliminator*. In other words, we make a function that can serve the same purpose as the data type at its use sites.

Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns the first one if it is true and the second one if it is false:

True
$$\equiv \lambda a. \lambda b. a$$

False $\equiv \lambda a. \lambda b. b$

How do we write conjunction? to "board"

And
$$\equiv \lambda p. \lambda q. p q p$$

Example (Test it out!)

Try β -normalising AND TRUE FALSE.

What about IMPLIES?

Natural Numbers

How do we use natural numbers? To do something *n* times!

So, a natural number will be a function that takes a function f and a value x, and applies the function f to x that number of times:

ZERO
$$\equiv \lambda f. \lambda x. x$$

ONE $\equiv \lambda f. \lambda x. f x$
TWO $\equiv \lambda f. \lambda x. f (f x)$
...

How do we write Suc?

Suc
$$\equiv \lambda n. \lambda f. \lambda x. f(n f x)$$

How do we write ADD?

ADD
$$\equiv \lambda m.\lambda n. \lambda f. \lambda x. m f (n f x)$$

Natural Number Practice

Example

Try β -normalising Suc One.

Example

Try writing a different λ -term for defining Suc.

Example

Try writing a λ -term for defining MULTIPLY.